Characterization of MOSkin detector for in vivo skin dose measurement during megavoltage radiotherapy

نویسندگان

  • Wei Loong Jong
  • Jeannie Hsiu Ding Wong
  • Ngie Min Ung
  • Kwan Hoong Ng
  • Gwo Fuang Ho
  • Dean L. Cutajar
  • Anatoly B. Rosenfeld
چکیده

In vivo dosimetry is important during radiotherapy to ensure the accuracy of the dose delivered to the treatment volume. A dosimeter should be characterized based on its application before it is used for in vivo dosimetry. In this study, we characterize a new MOSFET-based detector, the MOSkin detector, on surface for in vivo skin dosimetry. The advantages of the MOSkin detector are its water equivalent depth of measurement of 0.07 mm, small physical size with submicron dosimetric volume, and the ability to provide real-time readout. A MOSkin detector was calibrated and the reproducibility, linearity, and response over a large dose range to different threshold voltages were determined. Surface dose on solid water phantom was measured using MOSkin detector and compared with Markus ionization chamber and GAFCHROMIC EBT2 film measurements. Dependence in the response of the MOSkin detector on the surface of solid water phantom was also tested for different (i) source to surface distances (SSDs); (ii) field sizes; (iii) surface dose; (iv) radiation incident angles; and (v) wedges. The MOSkin detector showed excellent reproducibility and linearity for dose range of 50 cGy to 300 cGy. The MOSkin detector showed reliable response to different SSDs, field sizes, surface, radiation incident angles, and wedges. The MOSkin detector is suitable for in vivo skin dosimetry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures.

PURPOSE The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The...

متن کامل

Skin in vivo Dosimetry in Radiotherapy

Introduction: Due to the prevalence of skin problems in patients after radiotherapy, skin dose measuring is importance. Content: Skin in vivo dosimetry means measuring the patient's (or phantom) skin dose during radiotherapy. According to the ICRP 59, the dose at the depth of 0.07 mm is known as a skin dose. The most radiosensitive epidermis cells are located...

متن کامل

Real-time in vivo rectal wall dosimetry using MOSkin detectors during linac based stereotactic radiotherapy with rectal displacement

BACKGROUND MOSFET dosimetry is a method that has been used to measure in-vivo doses during brachytherapy treatments and during linac based radiotherapy treatment. Rectal displacement devices (RDDs) allow for safe dose escalation for prostate cancer treatment. This study used dual MOSkin detectors to assess real-time in vivo rectal wall dose in patients with an RDD in place during a high dose pr...

متن کامل

An Update of Couch Effect on the Attenuation of Megavoltage Radiotherapy Beam and the Variation of Absorbed Dose in the Build-up Region

Purpose: Fiber carbon is the most common material used in treating couch as it causes less beam attenuation than other materials. Beam attenuation replaces build-up region, reduces skin-sparing effect and causes target volume under dosage. In this study, we aimed to evaluate beam attenuation and variation of build-up region in 550 TxT radiotherapy couch.Materials and Methods: In this study, we ...

متن کامل

Rectal and Bladder Dose Measurements in the Intracavitary Applications of Cervical Cancer Treatment with HDR Afterloading System: Comparison of TPS Data with MOSFET Detector

Background: Intracavitary brachytherapy plays a major role in management of cervical carcinoma. Assessment of dose received by OAR’s therefore becomes crucial for the estimation of radiation toxicities in HDR brachytherapy. Objective: Purpose of this study is to evaluate the role of in vivo dosimetry in HDR brachytherapy and to compare actual doses delivered to OAR’ s with those calculate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014